La metáfora cuántica del amor a distancia (o por qué esa conexión con el que está lejos se siente tan real)

En física cuántica hay una teoría que podría explicar por qué estamos conectados cósmicamente con otros.

Todos hemos sentido la influencia de otra persona aun estando separados de ella. Una especie de unión cósmica trascendental: un mecanismo secreto detrás de la sincronía de nuestros sueños, o de los pensamientos al vuelo que luego resultan haber sido idénticos a los del ser lejano (como una especie de telepatía).

La física cuántica explica estos vínculos con el entanglement o “enredo” cuántico, que a su vez proviene de un principio descubierto hace más de 4 décadas: la no-localidad cuántica. Se trata de la conexión entre partículas subátomicas que no comparten el mismo espacio, pero que han estado en contacto en algún momento. Es lo que Einstein llamó despectivamente spooky action at a distance.

Esto, básicamente, rompe las reglas de la física clásica; por eso Einstein no estaba muy de acuerdo con la teoría del “enredo” cuántico y la no-localidad. Pero, ¿acaso esa extraña conexión con el otro no rompe también las reglas de lo establecido? ¿Cómo es que lo sentimos tan cerca, estando tan lejos? Eso quizá pueda ser explicado por la no-localidad y la posibilidad que nos ofrece de pensar un mundo interconectado más allá del espacio-tiempo. 

En este tenor, la no-localidad podría explicar incluso los vínculos con personas que no conocemos físicamente.

 

¿Enamorarnos de alguien que no conocemos y que está lejos?

ficica cuantica metafora amor principio no localidad
Arte: Mariano Peccinetti

En un estudio reciente, publicado en Science Daily, se comprobó que había otra forma de no-localidad además de las ya conocidas.

La nueva teoría postuló la conexión entre partículas que jamás han interactuado entre sí y que quizá ni siquiera se conocen, pero que comparten una especie de fundamental conexión que los investigadores han explicado a través de la metáfora de las emociones y los vínculos en el amor.

Se trata de algo así como la conexión que pudimos sentir de niños con un amigo imaginario, del amor platónico de juventud por algún rockstar o de ese enamoramiento por alguien que no conocemos físicamente, pero que quizá conocemos por cartas o Facebook.

metafora cuantica amor principio no localidad

Como sucede en el amor o la amistad, en la física cuántica las partículas subatómicas son capaces de realizar un vínculo más allá de un espacio compartido, e incluso más allá de si han interactuado o no. 

Por supuesto, esto es algo que no se puede comprobar empíricamente, ni puede ser visto; tal como nuestros vínculos con otros, cuya fuerza trasciende muchas veces toda distancia y, aunque inexplicables e invisibles, son completamente reales.

Hasta aquí parece obvio por qué el físico Niels Bohr comparó el lenguaje de los átomos con la poesía, diciendo:

Cuando se trata de átomos, el lenguaje puede ser usado sólo como poesía. El poeta no está tan preocupado en describir los hechos como en crear imágenes y establecer conexiones mentales.

No obstante, hay algo más. Esta conectividad subátomica sólo puede explicarse reinventando el tiempo mismo.

 

Amor subátomico más allá del tiempo

pirnicipio no localidad fisica cuantica

El vínculo entre partículas subátomicas puede ser atemporal. Esto explica la conexión entre lo que podríamos llamar las “partículas-amantes” en la teoría de la no-localidad.

Según los investigadores del estudio mencionado, realizado en la Universidad Chapman, existe cierta “indeterminación” creada por el tiempo en el mundo cuántico. El presente no sólo es afectado por el pasado, sino también por el futuro. Las partículas en el mundo cuántico ligan el futuro con el pasado en sutiles y significativas formas, trascendiéndolos de maneras que nos hacen pensar en la posibilidad de viajes espaciales o teletransportación cuántica.

Así, estas partículas pueden vincularse e influenciarse más allá del tiempo, sin importar lo que el futuro les depare. Lo mismo que hace Louise, la brillante lingüista de la película Arrival (2017), quien decide amar en el presente pese a saber las trágicas consecuencias de dicho acto en el futuro.

¿Nos atreveríamos, como las partículas o como Louise, a hacer lo que hacemos por amor si supiésemos lo que nos espera? ¿Amaríamos, aunque un universo se interpusiera entre nosotros y el otro? Quizá sí. Después de todo, el amor y la mecánica de las partículas subátomicas parecen ser las fuerzas que moldean el cosmos en su totalidad. Ambas son inexplicables y azarosas, pero irrenunciables.

 

* Imágenes: 1) Quantumenigmablog; 2) Flicrk d26b73; 3) Pixabay



Una metáfora cuántica para entender el amor de nuestros tiempos

Amar a alguien es un acto tan violento como lo fue la creación del cosmos.

El universo emergió cuando el vacío fue perturbado.

Según las teorías de la cuántica de campos, el “falso vacío” es una zona en el espacio que está “vacía” y cuyo estado de energía está en el punto cero, es decir: el nivel de energía más bajo que puede existir.  No obstante, el vacío nunca puede estar del todo desprovisto de materia. Según la cuántica, en su interior contiene formas de energía; fluctuaciones cuánticas.

Podría decirse, entonces, que un vacío es al universo lo que el corazón al cuerpo humano. El corazón nunca puede estar del todo desprovisto de fluctuaciones emocionales.

El “falso vacío” cuántico contiene energía cuántica: ondas electromagnéticas que fluctúan de manera permanente, así como partículas que saltan dentro y fuera de él. Se trata de un estado peculiar en el espacio cargado positivamente y sumamente inestable. Cuando es perturbado por un desbalance, el vacío se desintegra, dando lugar a la creación del cosmos.

El vacío deja de ser vacío y da paso a la expansión de la materia.

De esta forma, para la física cuántica la creación es producto de un desbalance cósmico: del azar y las circunstancias cuánticas. ¿Acaso no lo es también el amor? Por lo menos eso es lo que plantea Slavoj Žižek.

Quizá no hemos entendido lo que el filósofo esloveno quiere decir –no sería raro–. Pero probablemente su punto sea este: que lo primordial surge del azar y del caos. De las grandes explosiones.

El corazón humano –como eufemismo del amor– es inestable, pero jamás puede estar vacío. Cuando sucede un choque circunstancial y azaroso con otro ser, cuando un encuentro inesperado se convierte en una relación amorosa que transforma la vida de las dos personas implicadas, es cuando podemos decir que el amor es como un fenómeno cuántico.

El amor surge de un desbalance cósmico: de una perturbación.

En ese sentido, el amor tiene siempre algo de violento, como el propio cosmos. Amar es un riesgo latente, un miedo constante. La extinción de la pasión es inminente, como la de un astro, y cuando muere se produce una masiva supernova que deja restos estelares.

Pero tal y como, pese a todo, el universo se empecinó en existir… nosotros insistimos en amar.

fisica-cuantica-amor-valso-vacio-cuantico

Quizá el problema del amor en nuestros tiempos es que vemos esto como un problema. Ya no nos atrevemos a aceptar que el amor es entregarse, afirmarse, comprometerse, al tiempo que implica aceptar que todo lo que conocemos pueda desaparecer de un momento a otro. Tememos tanto que algo perturbe nuestro sagrado vacío –en realidad inexistente–, que ya no dejamos fluir en él la energía ni a las azarosas partículas cuánticas.

Estamos deteniendo el proceso de creación caótica que desata el verdadero amor. Y eso puede tener graves consecuencias para la existencia, a niveles cósmicos.

Pero el propio universo y la física cuántica nos demuestran que el vacío no está en realidad vacío, y que el amor no es sólo amar, en abstracto. En ese sentido, debemos volver a atrevernos a amar, pese –e incluso debido a– los riesgos y la violencia implícita. Como dice Žižek, el amor es malvado.

 

* Imágenes: 1) Imgur; 3) Plástica, graphic artist / øjeRum

Sandra Vanina Greenham Celis
Autor: Sandra Vanina Greenham Celis
Colaboradora del proyecto político Colectivo Ratio. Le gusta potenciar la depresión en su psique consumiendo productos culturales de las postrimerías del siglo XX. Cree teleologicamente en el arribo de la humanidad al comunismo.


Por primera vez científicos crean luz líquida a temperatura ambiente

Los físicos lograron por primera vez producir luz líquida a temperatura ambiente, haciendo que esta extraña forma de materia sea más accesible que nunca.

Desde hace siglos sabemos que la luz se compone de ondas, pero recientemente los científicos descubrieron que puede comportarse como un líquido y además rodear objetos.

Esta materia, que es a la vez un superfluido, tiene cero fricción y viscosidad, y un tipo de condensado de Bose-Einstein, a veces descrito como el quinto estado de la materia, que permite que la luz fluya alrededor de los objetos y las esquinas.

luz liquida temperatura ambiente 3205_web



En un reciente experimento se concluyó que aunque regularmente se comporta como una onda, en condiciones extremas la luz también puede actuar como un líquido y, de hecho, fluir alrededor de los objetos. Los condensados ​​de Bose-Einstein son interesantes para los físicos porque en este estado las reglas cambian de la física clásica a la cuántica, y la materia comienza a tener más propiedades ondulatorias.

luz liquida ciencia ficia cuantica
Es así como se forman a temperaturas cercanas al cero absoluto y existen sólo por fracciones de segundo, pero en este estudio, los investigadores fabricaron un condensado de Bose-Einstein a temperatura ambiente mediante una mezcla de luz y materia. Daniele Sanvitto, del Instituto de Nanotecnología de Italia, dijo:

Hemos demostrado que la superfluidez también puede ocurrir a temperatura ambiente, bajo condiciones ambientales, utilizando partículas de materia ligera llamadas polaritones.

cientificos crean luz liquida ciencia ficia cuantica--2

Además, los resultados del experimento abren el camino no sólo a nuevas investigaciones de hidrodinámica cuántica, sino también a dispositivos de polaritón a temperatura ambiente para futura tecnología avanzada, como la producción de materiales superconductores para dispositivos como LEDs, paneles solares y láseres.