Esta bicicleta convierte el aire contaminado en aire puro

Esta bicicleta asemeja a una planta con dos ruedas, con muchos beneficios adicionales; como la disminución del tráfico vial en una ciudad, la práctica constante del ejercicio y la reducción del aire contaminado.

En los últimos años, la bicicleta se ha convertido en uno de los medios de transportes más cotizados en las ciudades. Además de ser benéfico para la salud, también es una manera ecológica de cuidar al medio ambiente. Sin embargo, la toxicidad de contaminantes en el aire de las ciudades sigue trayendo graves consecuencias en la vida de los ciclistas.

Por esta razón, diseñadores en Bangkok, Tailandia, han decidido desarrollar la primera bicicleta que realiza la fotosíntesis para convertir el aire contaminado en aire puro. Esta bicicleta funciona a través de un método que aún está siendo perfeccionado, en donde un marco de aluminio asemeja un sistema de fotosíntesis para generar oxígeno como una reacción entre el agua y la energía eléctrica de una batería de iones de litio.

Bangkok Lightfog, la empresa a cargo de desarrollar este sistema, busca mejorar las cualidades que hacen de la bicicleta el medio de transporte más eficiente y amigable con el medio ambiente en el mundo:

Queremos diseñar productos que pueden reducir la contaminación del aire en la ciudad. Entonces decidimos diseñar una bicicleta porque pensamos que las bicicletas son vehículos medio ambientalmente amigables para transportarse y pueden hacer la diferencia en la lucha contra el cambio climático y el calentamiento global.

Esta bicicleta asemeja a una planta con dos ruedas, con muchos beneficios adicionales; como la disminución del tráfico vial en una ciudad, la práctica constante del ejercicio y la reducción del aire contaminado.

25385803993_4d98cf9708_z 25919625371_893c8c25c8_z 25381841524_c3436ddc3c_z



¿Por qué las instalaciones de musgo son la solución a la contaminación en las ciudades?

Bajo el concepto de CityTree, estas instalaciones citadinas están cubiertas por musgo, aprisionando cierta materia como óxido nitrógeno y CO2 mientras produce cantidades significativas de oxígeno y refresca el medio ambiente.

Numerosas ciudades del mundo han tenido que adaptarse a la cada vez más creciente sobrepoblación; han tenido que desarrollar nuevas infraestructuras tanto públicos como privados para agilizar el transporte y efectivar la vivencia de millones de habitantes. Desgraciadamente no todas las ciudades cuentan con conceptos y diseños que sean capaces de ser sostenibles tanto con las necesidades humanas como con la resiliencia de la naturaleza. Frente a ello, surge una startup tecnológica llamada Green City Solutions, la cual instala fitros de aire mediante cultivos de musgo. 

Bajo el concepto de CityTree, estas instalaciones citadinas están cubiertas por musgo,  aprisionando cierta materia como óxido nitrógeno y CO2 mientras produce cantidades significativas de oxígeno y refresca el medio ambiente. Cada instalación es alrededor de 3 metros de anchoy 4 metros de alto, en donde hay plantas a lo largo de 2.19 metros de profundidad. Además, es capaz de ofrecer un beneficio ambiental de 275 árboles, absorbiendo 250 gramos de partículas al día y removiendo 240 toneladas métricas de dióxido de carbono cada año. 

De acuerdo con el cofundador de Green City Solutions, Zhengliang Wu, “los cultivos de musgo poseen mucha más área de superficie vegetal que cualquier otra planta. Esto significa que puede capturar más contaminantes.” Y gracias a que cada instalación posee sensores vía Wi-Fi, se puede medir la calidad de aire alrededor de ella: se ha comprobado su efectividad a un bajo costo –cada instalación cuesta alrededor de 25 000– para limpiar el aire. 

 

 

Este tipo de proyectos que busca la ecosustentabilidad de las ciudades proveería numerosos beneficios tanto a la salud general de la población como a la ecología de la región. Varios estudios han comprobado la toxicidad de los contaminantes derivados de los medios de transporte, la basura, entre otros. De modo que incorporar esta tecnología podría ayudar a fortalecer la infraestructura citadina, mejorar el medio ambiente y regular la temperatura de las ciudades. 

 



Vaquita, ¿cómo hemos llegado hasta aquí?

En 1978, P. sinus, fue incluida en la lista roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) (Brownell & Robert. 1983).

Autor: Andrea Tapia García

Vaquita (Phoecena sinus), mejor conocida como vaquita marina. Es una especie endémica del Golfo de California que actualmente se encuentra en peligro crítico de extinción con una población cercana a los 30 individuos. ¿Cómo fue que esta especie llegó a este punto?

El Golfo de California, también conocido como Mar de Cortés, es uno de los mares biológicamente mas ricos y productivos en todo el mundo. Su riqueza ecológica y alta productividad, ha hecho que las actividades económicas aumentaran constantemente a lo largo del Golfo, convirtiéndolo en una región económicamente activa y causando un crecimiento incontrolado de la población (Urban, Rojas, Guerrero, Jaramillo & Findley, 2005).

Este mar es el hogar de cerca de 43 especies de mamíferos marinos, incluida la endémica vaquita. Debido a las diversas e insostenibles actividades humanas, como lo son la pesca, turismo, contaminación y cambio climático; los mamíferos marinos de esta área han sufrido diversas amenazas, logrando disminuir sus poblaciones, en algunos casos a un nivel crítico (Arrellano, Torreblanca & Smith, 2014).

Actualmente la vaquita es el cetáceo más amenazado en todo el mundo. Siendo la causa principal son las capturas incidentales en redes de pesca (Rohr, 2016). Durante las actividades pesqueras, los mamíferos marinos son capturados y mueren. Esto es conocido como captura incidental; y representa un problema para muchas especies de cetáceos alrededor del mundo (Danemann & Ezcurra 2007).

El poner en riesgo a esta especie, nos lleva a cuestionarnos ¿Qué se hizo bien?, ¿qué fue lo que faltó?, ¿queda algo más por hacer?. A partir de estas y otras preguntas, se tratará de dar un panorama sobre el porqué esta especie se encuentra al borde de la extinción.

La vaquita (P. sinus), es el cetáceo más pequeño de todo el mundo con un tamaño cerca de los 140 cm. De acuerdo a Norris y Mc Farland (1958; citados por Urban et al. 2005), su distribución se encuentra limitada a la parte Norte del Golfo de California. Suelen estar en grupos pequeños o solitarios y se calcula una vida media de 20 años, con una reproducción de un individuo cada 2 años. Aunque la edad de madurez sexual ha sido difícil de estimar, se cree que maduran alrededor de los 5 años (Mateos, 2017; Brownell & Robert. 1983; Rohr, 2016; Urban et al. 2005).

La vaquita comparte aguas con un pez conocido como totoaba, también endémico de la región. La vejiga de este pez, al que se le atribuyen capacidades afrodisiacas y medicinales, puede venderse en Asia con un precio que llega alcanzar hasta los 60 mil dólares, consumiéndose principalmente en China (El Universal, 2017). Desde el año de 1942, la pesca furtiva y el tráfico para su vejiga han provocado una pesca incontrolada e ilegal, involucrando tanto a pescadores mexicanos como traficantes estadunidenses (Brownell & Robert. 1983).

El primer reporte registrado de vaquita en una red de pesca data del año 1961 por Norris y Prescott. La captura incidental por las flotas pesqueras en la década de 1970, estaba en el rango de decenas a cientos de vaquitas (Brownell & Robert. 1983). En el año 1975, se declaró la veda permanente para la totoaba; sin embargo, la pesca con redes de enmalle siguieron operando.

En 1978, P. sinus, fue incluida en la lista roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) (Brownell & Robert. 1983). Se contrató personal profesional en áreas protegidas y se desarrolló un plan de manejo (Arrellano et al. 2014). A pesar de esto, las pescas incidentales, no se detuvieron, teniendo un rango de muerte de 32 vaquitas por año (Brownell & Robert. 1983).

En 1993, el Alto Golfo de California y el Río Colorado, son decretados Reserva de la Biosfera. El gobierno especifica la protección legal de la vaquita, complementando las regulaciones de la reserva. Al observar que la población seguía disminuyendo, se realizaron estudios de población que demostraron que el área protegida no coincidía con su distribución. Además, la zona de reserva no contaba con los señalamientos adecuados para la prohibición de pesca.

La International Whale Commission (IWC) basándose en un estudio con una mortalidad de entre 39 y 84 vaquitas en 1995 (D’Agrossa et al, 2000), propuso el cierre de la pesquería de totoaba. Se necesitaba reconsiderar los permisos de pesca, realizar acciones para detener el comercio ilegal de totoaba y desarrollar un plan de protección a largo plazo para la vaquita. En dicho plan necesitaba incluirse educación y alternativas para pescadores, así como acciones de monitoreo (Comité Internacional para la Recuperación de la Vaquita marina [CIRVA], 2014). De no ponerse en marcha, calcularon que la población bajaría durante los siguientes 15 años a 50 individuos (Urban et al. 2005).

En la década de los 90 la gestión de áreas litorales se basaba en un modelo integrador, donde se tomaba en cuenta el desarrollo sostenible junto con la participación pública (Pérez C. 2014). Si se observa el caso de la reserva de Cabo Pulmo en Baja California, resulta evidente que para que un plan de manejo sea exitoso, debe haber una implementación de las acciones por parte del gobierno y las personas afectadas por dicho manejo (Olsen et al 1999).

En el caso del Mar de Cortés, se prohibieron las redes de enmalle, pero sin dar una solución a los pescadores. Los pescadores locales argumentaron que las nuevas redes eran insuficientes para mantenerse y que mientras no se diera una solución eficaz, seguirían utilizando redes de enmalle (CIRVA, 2014).

La CIRVA sostuvo que debido a la falta de medidas eficaces para controlar la pesca, las vaquitas habían seguido un rápido camino a la extinción y que para detenerlo se debían retirar todas las redes de enmalle. (CIRVA, 2014). Después de que Omar Vidal, director de la WWF, comentara que las redes de enmalle eran la razón por la que la población de vaquitas se encontraba encolapso, la SEMARNAT (Secretaria de Medio Ambiente y de Recursos Naturales), comenzó a trabajar en una alternativa para sustituir este tipo de redes, trabajo que hasta la fecha sigue inconcluso. (Zamarrón, 2016).

A pesar de las advertencias, el gobierno Mexicano no realizó las acciones necesarias. Inclusive la IWC afirmó que si el gobierno hubiera seguido las recomendaciones, la vaquita probablemente no se encontraría en esta situación. (CIRVA, 2014). No fue hasta el año 2012, que se realizaron los primeros esfuerzos reales para detener el comercio ilegal (CIRVA,2014). A pesar de los esfuerzos en patrullar las zonas y hacer cumplir las normas, el proceso judicial es descuidado y no se logran las condenas establecidas. Consecuentemente, el comercio ilegal no ha podido ser detenido (Méndez E. 2017). En este punto, el retirar las redes de enmalle era insuficiente, se necesitaba prohibir todo tipo de pesca en la zona (CIRVA, 2014).

Debido a los pocos avances logrados, en el año 2016 se lanzó una iniciativa, donde se buscaba considerar la pesca de totoaba como un delito grave y sin derecho a fianza, con la finalidad de cesar con las redes de pesca de manera definitiva. Actualmente esta iniciativa sigue en proceso de revisión. (Garduño J., 2017).

De acuerdo a la CIRVA en noviembre de 2016 quedaban 30 individuos. Al no poder parar la caza ilegal y al borde de la extinción, científicos han propuesto capturar especímenes y colocarlos en un corral marino. Junto con ayuda de delfines entrenados por parte la marina de EUA, se buscaría localizar los individuos para transferirlos a un estanque temporal, construido dentro de su hábitat.

Sin embargo, aunque este plan pudiera llevarse a cabo, los científicos ven poco probable que la reproducción en cautiverio, pudiera restaurar la población. Este plan de manejo, representa una última alternativa, para evitar la extinción de la vaquita, que requeriría de grandes esfuerzos de manera continua, durante décadas (Mendez E., 2017).

Este caso de pérdida de biodiversidad debido al comercio y el tráfico ilegal, la falta de comunicación entre sociedad y gobierno, y la falta de acciones por parte del gobierno Mexicano, Estadunidense y Chino; deberá tomarse como referencia para poder realizar planes de manejo completos, eficaces e integradores. Se debe ayudar a la gente a ver en una perspectiva diferente. Informarlos, entender sus problemas y entre todos buscar una solución. Sólo de esta manera, los recursos marinos podrán ser aprovechados de manera sostenible; y la conservación y el manejo de recursos, podrán ir de la mano.



¿La alteración en el genoma de las plantas brindará estabilidad a la agricultura ecosustentable?

Para Tester, usar tierras arenosas, agua de mar y una revolución en el genoma de las plantas, ayudará a desarrollar nuevas técnicas que contribuyan a una nueva agricultura global y ecosustentable.

“Imagina un escenario en donde los campos de cultivo, de cebada, quinoa o arroz, puedan crecer en condiciones similares a las de un desierto, con poca calidad de suelo o tierras marginales y estériles”, son las palabras de Mark Tester, profesor de Ciencia de las plantas. Su visión es brindar un futuro estable y comprometedor a la agricultura ecosustentable mediante cultivo básico, irrigado con agua salobre, y así producir la suficiente cantidad de alimentos nutritivos para la población mundial. 

Tester, con la pasión de mejorar el planeta, diseñó y creó el Plan Accelerator en la Universidad de Adelaide en Australia, la cual facilita a los científicos tanto a crecer y observar miles de especies vegetales tomando en consideración los factores genéticos y ambientales que puedan influir la productividad y la salud. Mediante el uso de tecnologías genómicas y genéticas, Tester busca manipular sus genes para proveerles la habilidad de proliferar en zonas marginales con poca condición salina. 

Actualmente se dedica a tres áreas principales para alcanzar su objetivo:  

Primero, deseamos incrementar la tolerancia a la salinidad de zonas de cultivo comunes y difíciles. Por ejemplo, recientemente identificamos un loci –lugar geométrico– genético clave que es responsable del aumento a la tolerancia de sal en diferentes cadenas de cebada y arroz. Segundo, deseamos domesticar a las plantas tolerantes a la sal para que proliferen y se reproduzcan en campos altos aún con condiciones extremas. Recientamente pudimos encontrar la primera secuencia de alta calidad del genoma de la quinoa; y nuestros resultados nos ayudaron a comprender cómo las plantas crecen, maduran y producen semillas, permitiéndonos crear una planta de quinoa altamente productiva y resiliente.

Una vez que se logren estos dos objetivos, Tester planea continuar con un cultivo de irrigación con agua parcialmente desalinada a un costo económicamente viable: “Mucha de la comida del mundo se produce actualmente mediante la irrigación de agua fresca. Esto es completamente poco sustentable, principalmente porque brinda mayores retos ante el cambio climático y el calentamiento de la Tierra. Esta confianza en la irrigación es un gigante durmiente en un cuarto. Es indispensable que trabajemos en una solución para esto.”

Para Tester, usar tierras arenosas, agua de mar y una revolución en el genoma de las plantas, ayudará a desarrollar nuevas técnicas que contribuyan a una nueva agricultura global y ecosustentable. 

 



¿Qué necesitas saber del solsticio de verano, el día más largo del año?

Esta fecha es considerada el día de máxima energía, de esplendor de la naturaleza.

El 21 de junio del 2017 a las 4h24 comenzará el solsticio de verano en el hemisferio norte y el solsticio de invierno en el hemisferio sur. Se trata del momento en que el Sol alcanzará su más alto grado de declinación norte –+23º 27’–, marcando el día más largo y luminoso del año en el norte –y la noche más larga en el sur–. Se le asume al solsticio la entrada del Sol a la constelación de Cáncer, dando inicio al verano y al invierno. 

Esta fecha es considerada el día de máxima energía, de esplendor de la naturaleza. Hay culturas y antiguas civilizaciones que festejaban este día debido a su asociación con la fertilidad, la cosecha, la fruición de siembra, el cenit de la vida espiritual. Curiosamente se entrelaza este día con las celebraciones paganas de Midsummer y la fiesta de San Juan, las cuales se realizan mediante un rito para “dar más fuerza al sol”  mediante hogueras. Simbólicamente, el fuego para estas fiestas tiene una función de purificación en las personas que lo contemplan. 

Al conservar y maximizar la energía del sol, no sólo se permite eficientar los procesos de agricultura, también se mejoran los ciclos de sueño y de estabilidad emocional. En otras palabras, es una oportunidad para la conciencia de las fuerzas entre la naturaleza y la humanidad, el cosmos y la vida. 

Más en Ecoosfera: 

Sobre el solsticio de verano y la luna de fresa

Centros ceremoniales mexicanos para recibir el equinoccio de primavera



Las cordilleras de la luna de Saturno: ¿qué tanto sabemos de Iapetus en la actualidad?

Lo característico de Iapetus es su cordillera, lo cual no ha habido nada parecido en el sistema solar hasta ahora.

De entre las principales lunas del sistema solar, Iapetus se encuentra entre las más extrañas e hipnóticas. Se trata del satélite de Saturno, la cual posee una forma de nuez, con una cara negra y una parte trasera blanca y brillante, un cinturón con una cordillera puntiaguda, así como una órbita que viaja tres veces más alejada de Saturno que su vecino, luna Titán.  

¿Qué hace especial a este astro? Parece ser que su recorrido es inclinado, balanceándose hacia arriba y abajo mientras orbita en el plano de los anillos de Saturno. Es como una especie de rebelde en el sistema saturniano, que va a su propia órbita aún si lo hace a su ritmo: “Viaja recta como una flecha a lo largo de tres cuartas partes del ecuador de la luna y es gigantesca: con aproximadamente 20 kilómetros de altura y hasta 200 kilómetros de ancho –a modo de comparación, la cima del Everest tan sólo se eleva 8,85 kilómetros sobre el nivel del mar–. 

Lo característico de Iapetus es su cordillera, lo cual no ha habido nada parecido en el sistema solar hasta ahora. Actualmente los científicos no han logrado identificar cómo pudo formarse: “Las primeras teorías sugieren que se trata de la actividad geológica dentro de la propia luna. Puede que algo similar a las placas tectónicas de la Tierra o el volcanismo hayan provocado que la cesta se haya levantado en el ecuador. […] La corteza de la luna no era esponjosa cuando la cresta se formó, las pruebas de una geología activa se enfriaron.”

 

Los científicos consideraron que la cordillera se formó como una consecuencia de la repentina ralentización de su periodo de rotación: “Las primeras simulaciones sugieren que un día en luna solía durar unas 16 horas. […] Es posible que un enorme impacto haya dejado a Iapetus en su estado rotacional actual, y que el ‘frenazo’ resultante haya provocado que la corteza se doblase.” Se sabe que el recorrido de Iapetus dura alrededor de 79 días terrestres, y permanece dando el mismo rostro como si estuviese anclada gravitacionalmente. 

Observatorio

Seguimiento a los asuntos ambientales y de ecología más urgentes de México.

Biblioteca Ecoosfera

Una compilación de lecturas (libros, ensayos, etc) disponibles en PDF sobre temas como sustentabilidad, medioambiente y salud.

Ir a Biblioteca